Event calendar

Autonomous analysis of synchrotron X-ray experiments with applications to metal nanoparticle synthesis

A critical step in developing autonomous pipelines for materials synthesis experiments is automatic interpretation of characterization experiments. In this talk, we present an example of a closed-loop bayesian optimization pipeline for metal nanoparticle synthesis using real-time information from Small-angle X-ray Scattering (SAXS) experiments. This approach has previously successfully created libraries of monodisperse Pd nanoparticles with user-specified sizes. In addition, we describe a CNN-based method used to interpret complementary X-ray diffraction data. Here CNN regression models are trained for each crystal class to predict lattice parameters for the corresponding unit-cell. A key component of this work involves data augmentation schemes which capture sources of experimental noise in order to improve model generalizability. The lattice parameter estimates are subsequently refined using an automatic whole-pattern fitting algorithm. 


through PST