Event calendar

AI Seminar: Towards sub-microsecond neural network inference latency with optimized nonuniform quantization

More and more physics and light source experiments surpass TB/s data rates, which are unsustainable for data acquisition, transfer, and storage systems. To keep costs, power requirements and storage facilities feasible, data must be reduced at the source: adjacent to the detector itself. Not all data are equivalent; what is truly valuable is the information contained within. Fast Edge Machine Learning inference models on FPGAs can extract this useful information from raw data, categorize events and apply actions with low latencies. Moreover, state-of-the-art optimized nonuniform quantization can be used even closer to the source – directly at the digitizers – to maximize useful information representation. This enables the use of leaner and more accurate Edge Machine Learning models. Combining optimized nonuniform quantization with fast Edge Machine Learning inference models on FPGAs reduces data generation directly at the source and thus reduces data acquisition, transfer, and storage complexity by several orders of magnitude. We demonstrate this approach by combining two prior proofs-of-concept targeting the CookieBox, an angular streaking detector developed for LCLS-II. Data is first optimally quantized before being streamed to a parallel and pipelined ready inference model to extract the desired information. With this scheme, we measured an inference latency of 5.78 µs directly on the FPGA with marginal drop in accuracy compared to simulations. If we tolerate another 3 % drop in accuracy, we can reach an inference latency of 1.93 µs.


through PST